If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2+29n-15=0
a = 10; b = 29; c = -15;
Δ = b2-4ac
Δ = 292-4·10·(-15)
Δ = 1441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-\sqrt{1441}}{2*10}=\frac{-29-\sqrt{1441}}{20} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+\sqrt{1441}}{2*10}=\frac{-29+\sqrt{1441}}{20} $
| 32=2×2+2w | | -14-(5x-12)=-7(x+1) | | 16x^2+72x-144=0 | | -7u+34=-3u+6 | | 5t+400=-t-34 | | 8x-9=1/2(12x-28) | | 7u+34=-3u+6 | | 8n+16=22 | | 1/3q+8=q-10 | | 2a-10=a+2.54 | | 8+10m=178 | | (5x-590)+(x/3)=130 | | 144=-72x | | k=6/30 | | 3x-27=5x-25 | | S=5-(2÷3^3t) | | 5x-2.6=8 | | -51=-3+8n | | 21+3m+6+9m-3=0 | | 0=-32x | | 4x=12=80 | | 4x=2x+14.2 | | 3x+(3x-18)=180 | | 0.125x+17=2x-118 | | 6y-2=70 | | 6x=(8x-22) | | 2-1x=8.4-4.2x | | 5x+(5x+66)=146 | | 5x3+7x=14x-19 | | 2(7-7x)+4x=24 | | −6k−7=17 | | 4x+6x-100=-10x |